These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High pressure structural and vibrational properties of the spin-gap system Cu2PO4(OH). Author: Malavi PS, Karmakar S, Karmakar D, Mishra AK, Bhatt H, Patel NN, Sharma SM. Journal: J Phys Condens Matter; 2013 Jan 30; 25(4):045402. PubMed ID: 23258210. Abstract: The structural and vibrational properties of the spin-gapped system Cu(2)PO(4)(OH) have been investigated at room temperature under high pressure up to ~20 GPa by Raman scattering and synchrotron-based x-ray diffraction and infrared (IR) spectroscopic measurements. The orthorhombic phase (space group Pnnm, z = 4) remains stable up to at least 7 GPa where it undergoes a weakly first order structural transition (with negligible volume drop) to a monoclinic phase (space group P2(1)/n, z = 4) with an abrupt monoclinic distortion. Refinement of atomic positions has been performed for the low pressure phase. The conspicuous changes in the vibrational spectra (Raman as well as far-IR) confirm this phase transition. At further higher pressures the monoclinic angle increases rapidly and the system transforms irreversibly into a disordered phase. Detailed vibrational analyses have been performed in the orthorhombic phase and pressure-induced structural evolution has been correlated with the vibrational modes corresponding to the Cu-O bonds. A strong negative pressure dependence of hydroxyl mode frequencies (as observed from the mid-IR absorption spectra) supports the pressure-induced structural disordering at higher pressures.[Abstract] [Full Text] [Related] [New Search]