These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nasal high-frequency oscillation for lung carbon dioxide clearance in the newborn.
    Author: Mukerji A, Finelli M, Belik J.
    Journal: Neonatology; 2013; 103(3):161-5. PubMed ID: 23258368.
    Abstract:
    BACKGROUND: Noninvasive ventilation has been used increasingly in recent years to minimize the duration of endotracheal mechanical ventilation in neonates due to its association with lung injury. Nasal high-frequency oscillation (nHFO) is a relatively new noninvasive modality but evidence for its use is limited. OBJECTIVE: The goal of this study was to compare the CO2 clearance efficacy of nHFO and noninvasive positive pressure ventilation (NIPPV) in a neonatal lung model. DESIGN/METHODS: A newborn mannequin with dimensions and anatomy similar to a term infant was utilized. It was connected to a commercially available neonatal mechanical ventilator using a manufacturer-provided nasal adaptor. Various modes of noninvasive ventilation were compared as CO2 clearance was measured at the oropharynx by an end-tidal CO2 analyzer following the addition of a known amount of CO2 into the lung. Measurements were obtained at two different lung compliances using nHFO and compared with nCMV and nasal continuous positive airway pressure (nCPAP) as a control. Pressures near the nasal adaptor and the larynx were simultaneously measured with in-line pressure transducers. RESULTS: Whereas no CO2 elimination was observed under nCPAP, its clearance with nHFO was 3-fold greater as compared to NIPPV. On nHFO, CO2 clearance was inversely proportional to frequency and maximal at 6 and 8 Hz. At a lower lung compliance, CO2 clearance was significantly higher at 6 Hz as compared to 10 Hz. During nHFO set to deliver a MAP of 10.0, we documented pressures of 7.2 ± 0.3 at the nasal adaptor and only 2.3 ± 0.3 cm H2O at the larynx. CONCLUSIONS: Nasal HFO is effective and superior to NIPPV at lung CO2 elimination in a newborn mannequin model. The use of nHFO as the preferred mode of noninvasive ventilation warrants further clinical studies.
    [Abstract] [Full Text] [Related] [New Search]