These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bimetallic lanthanide amido complexes as highly active initiators for the ring-opening polymerization of lactides. Author: Sun S, Nie K, Tan Y, Zhao B, Zhang Y, Shen Q, Yao Y. Journal: Dalton Trans; 2013 Feb 28; 42(8):2870-8. PubMed ID: 23258377. Abstract: A series of neutral bimetallic lanthanide amido complexes supported by rigid phenylene bridged bis(β-diketiminate) ligands were synthesized, and their catalytic behavior for the polymerization of L-lactide and rac-lactide was explored. The amine elimination reaction of Ln[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with PARA-H(2), [PARA-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(para-phenylene)] in a 2:1 molar ratio in THF at 25 °C afforded the corresponding bimetallic lanthanide amido complexes PARA-{Ln[N(SiMe(3))(2)](2)}(2) [Ln = Nd(1), Sm(2), Y(3)] in high isolated yields. Similar reaction of Nd[N(TMS)(2)](3)(μ-Cl)Li(THF)(3) with META-H(2), [META-H(2) = 2[2,6-(i)Pr(2)C(6)H(3)NHC(Me)C(H)C(Me)N]-(meta-phenylene)] at 90 °C in toluene for about 48 h gave META-{Nd[N(SiMe(3))(2)](2)}(2) (4). Complexes 1-4 were well characterized by elemental analysis, IR spectroscopy, and their definitive structures were confirmed by an X-ray crystal structure analysis. The coordination environment and coordination geometry around the metal atoms are similar in these complexes. Each of the metal atoms is four-coordinated with two nitrogen atoms from the N,N-chelating β-diketiminate unit, and two nitrogen atoms from two (Me(3)Si)(2)N- groups to form a distorted tetrahedron. These complexes can serve as highly active initiators for L-lactide polymerization in toluene. In addition, they also showed high activity towards rac-lactide polymerization in THF at room temperature, giving heterotactic-enriched polymers (P(r) ≈ 0.70), and complex 4 displays obviously higher activity in comparison with complex 1.[Abstract] [Full Text] [Related] [New Search]