These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor.
    Author: Gnedenko OV, Mezentsev YV, Molnar AA, Lisitsa AV, Ivanov AS, Archakov AI.
    Journal: Anal Chim Acta; 2013 Jan 08; 759():105-9. PubMed ID: 23260683.
    Abstract:
    A highly sensitive reverse sandwich immunoassay for the detection of human cardiac myoglobin (cMb) in serum was designed utilizing a gold nanoparticle (AuNP)-enhanced surface plasmon resonance (SPR) biosensor. First, a monoclonal anti-cMb antibody (Mab1) was covalently immobilized on the sensor surface. AuNPs were covalently conjugated to the second monoclonal anti-cMb antibody (Mab2) to form an immuno-gold reagent (Mab2-AuNP). The reverse sandwich immunoassay consists of two steps: (1) mixing the serum sample with Mab2-AuNP and incubation for the formation of cMb/Mab2-AuNP complexes and (2) sample injection over the sensor surface and evaluation of the Mab1/cMb/Mab2-AuNP complex formation, with the subsequent calculation of the cMb concentration in the serum. The biosensor signal was amplified approximately 30-fold compared with the direct reaction of cMb with Mab1 on the sensor surface. The limit of detection of cMb in a human blood serum sample was found to be as low as 10 pM (approx. 0.18 ng mL(-1)), and the inter-assay coefficient of variation was less than 3%. Thus, the developed SPR-based reverse sandwich immunoassay has a sensitivity that is sufficient to measure cMb across a wide range of normal and pathological concentrations, allowing an adequate estimation of the disease severity and the monitoring of treatment.
    [Abstract] [Full Text] [Related] [New Search]