These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI.
    Author: Ianuş A, Siow B, Drobnjak I, Zhang H, Alexander DC.
    Journal: J Magn Reson; 2013 Feb; 227():25-34. PubMed ID: 23261952.
    Abstract:
    Oscillating gradients provide an optimal probe of small pore sizes in diffusion MRI. While sinusoidal oscillations have been popular for some time, recent work suggests additional benefits of square or trapezoidal oscillating waveforms. This paper presents analytical expressions of the free and restricted diffusion signal for trapezoidal and square oscillating gradient spin echo (OGSE) sequences using the Gaussian phase distribution (GPD) approximation and generalises existing similar expressions for sinusoidal OGSE. Accurate analytical models are necessary for exploitation of these pulse sequences in imaging studies, as they allow model fitting and parameter estimation in reasonable computation times. We evaluate the accuracy of the approximation against synthesised data from the Monte Carlo (MC) diffusion simulator in Camino and Callaghan's matrix method and we show that the accuracy of the approximation is within a few percent of the signal, while providing several orders of magnitude faster computation. Moreover, since the expressions for trapezoidal wave are complex, we test sine and square wave approximations to the trapezoidal OGSE signal. The best approximations depend on the gradient amplitude and the oscillation frequency and are accurate to within a few percent. Finally, we explore broader applications of trapezoidal OGSE, in particular for non-model based applications, such as apparent diffusion coefficient estimation, where only sinusoidal waveforms have been considered previously. We show that with the right apodisation, trapezoidal waves also have benefits by virtue of the higher diffusion weighting they provide compared to sinusoidal gradients.
    [Abstract] [Full Text] [Related] [New Search]