These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation.
    Author: Dai Y, Sun Q, Tan S, Wo J, Zhang J, Liu D.
    Journal: Opt Express; 2012 Dec 03; 20(25):27367-76. PubMed ID: 23262687.
    Abstract:
    A highly sensitive liquid-level sensor based on dual-wavelength single-longitudinal-mode fiber laser is proposed and demonstrated. The laser is formed by exploiting two parallel arranged phase-shift fiber Bragg gratings (ps-FBGs), acting as ultra-narrow bandwidth filters, into a double-ring resonators. By beating the dual-wavelength lasing output, a stable microwave signal with frequency stability better than 5 MHz is obtained. The generated beat frequency varies with the change of dual-wavelength spacing. Based on this characteristic, with one ps-FBG serving as the sensing element and the other one acting as the reference element, a highly sensitive liquid level sensor is realized by monitoring the beat frequency shift of the laser. The sensor head is directly bonded to a float which can transfer buoyancy into axial strain on the fiber without introducing other elastic elements. The experimental results show that an ultra-high liquid-level sensitivity of 2.12 × 10(7) MHz/m within the measurement range of 1.5 mm is achieved. The sensor presents multiple merits including ultra-high sensitivity, thermal insensitive, good reliability and stability.
    [Abstract] [Full Text] [Related] [New Search]