These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reductive dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles prepared in the presence of ultrasonic irradiation. Author: Zhao D, Li M, Zhang D, Baig SA, Xu X. Journal: Ultrason Sonochem; 2013 May; 20(3):864-71. PubMed ID: 23266438. Abstract: Palladium/Iron (Pd/Fe) nanoparticles were prepared by using ultrasound strengthened liquid phase reductive method to enhance dispersion and avoid agglomeration. The dechlorination of 2,4-dichlorophenol (2,4-DCP) by Pd/Fe nanoparticles was investigated to understand its feasibility for an in situ remediation of contaminated groundwater. Results showed that 2,4-DCP was first adsorbed by Pd/Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). The induction of ultrasound during the preparation of Pd/Fe nanoparticles further enhanced the removal efficiency of 2,4-DCP, as a result, the phenol production rates increased from 65% (in the absence of ultrasonic irradiation) to 91% (in the presence of ultrasonic irradiation) within 2h. Our data suggested that the dechlorination rate was dependent on various factors including Pd loading percentage over Fe(0), Pd/Fe nanoparticles availability, temperature, mechanical stirring speed, and initial pH values. Up to 99.2% of 2,4-DCP was removed after 300min reaction with these conditions: Pd loading percentage over Fe(0) 0.3wt.%, initial 2,4-DCP concentration 20mgL(-1), Pd/Fe dosage 3gL(-1), initial pH value 3.0, and reaction temperature 25°C. The degradation of 2,4-DCP followed pseudo-first-order kinetics reaction and the apparent pseudo-first-order kinetics constant was 0.0468min(-1).[Abstract] [Full Text] [Related] [New Search]