These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: β-Ionone attenuates LPS-induced pro-inflammatory mediators such as NO, PGE2 and TNF-α in BV2 microglial cells via suppression of the NF-κB and MAPK pathway. Author: Kang CH, Jayasooriya RG, Choi YH, Moon SK, Kim WJ, Kim GY. Journal: Toxicol In Vitro; 2013 Mar; 27(2):782-7. PubMed ID: 23268108. Abstract: β-Ionone, a precursor of carotenoids, possesses a variety of biological properties such as anti-cancerous, anti-mutagenic and anti-microbial activity. Nevertheless, anti-inflammatory effects of β-ionone remain unknown. In this study, we investigated whether ION attenuates the expression of lipopolysaccharide (LPS)-induced pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α) in BV2 microglia cells. Our data showed that β-ionone significantly inhibits secretion of NO, PGE2 and TNF-α. β-Ionone also inhibits the expression of inducible NO synthesis (iNOS), cyclooxygenase-2 (COX-2) and TNF-α protein and their mRNA in LPS-stimulated BV2 microglia cells. In addition, β-ionone significantly reduced DNA-binding activity of nuclear factor-κB (NF-κB) through suppression of nuclear translocation of p50 and p65. We showed that NF-κB inhibitor N-acetyl-L-cysteine (NAC) effectively attenuates the expression of LPS-stimulated iNOS, COX-2 and TNF-α. We also found that LPS-induced NF-κB activation is significantly regulated through inhibition of Akt phosphorylation in the presence of β-ionone. Finally, we showed that β-ionone substantially inhibits the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK1/2, p38 and JNK, which are closely related to regulation of pro-inflammatory mediator secretion. Taken together, these data imply that β-ionone regulates LPS-induced NF-κB-dependent inflammatory pathways through suppression of Akt and MAPK activation.[Abstract] [Full Text] [Related] [New Search]