These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuraminidase-dependent hamagglutination of human erythrocytes by human strains of Actinomyces viscosus and Actinomyces naeslundii.
    Author: Costello AH, Cisar JO, Kolenbrander PE, Gabriel O.
    Journal: Infect Immun; 1979 Nov; 26(2):563-72. PubMed ID: 232691.
    Abstract:
    Human A, B, and O erythrocytes (RBC) were agglutinated by many human strains of Actinomyces viscosus and A. naeslundii. At 37 degrees C, these bacterium-mediated hemagglutination reactions required the action of bacterial neuraminidase upon the RBC; however, at 4 degrees C, the requirement for neuraminidase was not as striking. Bacterial cell suspensions which caused hemagglutination at 37 degrees C contained both soluble extracellular and cell-associated neuraminidase activities as shown by enzyme assays using a soluble substrate (i.e., alpha 1-acid glycoprotein). Bacterium-mediated hemagglutination occurred only in the presence of soluble neuraminidase activity, and the rate of hemagglutination could be inhibited by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, a competitive inhibitor of purified soluble neuraminidase from A. viscosus T14V. Suspensions of bacteria which contained only cell-associated neuraminidase activity were unable to initiate hemagglutination, but they caused immediate hemagglutination when mixed with neuraminidase-treated RBC. All hemagglutination reactions were reversible in the presence of 0.02 M lactose and were abolished by heating (85 degrees C for 30 min) the actinomycete cells but not the RBC. The proposed mechanism of hemagglutination involves two sequential steps: (i) the action of neuraminidase to unmask galactose-containing receptors on the RBC and (ii) the multivalent binding of these receptors by many low-affinity lection sites on the bacterial surface.
    [Abstract] [Full Text] [Related] [New Search]