These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid.
    Author: Fan L, Zhao G, Shi H, Liu M, Li Z.
    Journal: Biosens Bioelectron; 2013 May 15; 43():12-8. PubMed ID: 23274191.
    Abstract:
    A simple aptasensor for sensitive and selective detection of acetamiprid has been developed based on electrochemical impedance spectroscopy (EIS). To improve sensitivity of the aptasensor, gold nanoparticles (AuNPs) were electrodeposited on the bare gold electrode surface by cycle voltammetry (CV), which was employed as a platform for aptamer immobilization. With the addition of acetamiprid, the formation of acetamiprid-aptamer complex on the AuNPs-deposited electrode surface resulted in an increase of electron transfer resistance (Ret). The change of Ret strongly depends on acetamiprid concentration, which is applied for acetamiprid quantification. A wide linear range was obtained from 5 to 600nM with a low detection limit of 1nM. The control experiments performed by employing the pesticides that may coexist or have similar structure with acetamiprid demonstrate that the aptasensor has only specific recognition to acetamiprid, resulting in high selectivity of the aptasensor. The dissociation constant, Kd of 23.41nM for acetamiprid-aptamer complex has been determined from the differential capacitance (Cd) by assuming a Langmuir isotherm, which indicates strong interaction between acetamiprid and aptamer, further proving high selectivity of the aptasensor. Besides, the applicability of the developed aptasensor has been successfully evaluated by determining acetamiprid in the real samples, wastewater and tomatoes.
    [Abstract] [Full Text] [Related] [New Search]