These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Critical role for PDE4 subfamilies in the development of experimental autoimmune encephalomyelitis.
    Author: Sanabra C, Johansson EM, Mengod G.
    Journal: J Chem Neuroanat; 2013 Jan; 47():96-105. PubMed ID: 23274837.
    Abstract:
    Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis exhibiting neuroinflammation, axonal damage and demyelination, further characterized by T- and B-cell responses to myelin oligodendrocyte glycoprotein. Pharmacological manipulation of phosphodiesterases (PDEs) provokes profound anti-inflammatory responses through modulation of cAMP levels. The PDE4B subfamily has been related to the inflammatory immune response in mice and PDE4 inhibition produces amelioration of the clinical signs and delayed onset in the EAE model. Analyses of the expression of the mRNA coding for PDE4B splice variants revealed an upregulation of PDE4B2 in the brainstem and spinal cord of EAE mice which correlated with forkhead box P3 (FoxP3) and transforming growth factor beta (TGF-β) mRNAs expression in a score-dependent manner. The increase observed for the PDE4B protein was mainly found in antigen-presenting cells (APCs) such as dendritic cells and microglia/macrophages, in areas with high cellular infiltration. Unexpectedly, PDE4B(-/-) mice showed an earlier onset of the disease compared to wildtype mice. The results point to a possible role of the PDE4B enzyme and in particular the PDE4B2 splice variant during EAE pathogenesis, probably by modulating cAMP levels in APCs, consequently influencing the cytokine environment important for T-cell differentiation.
    [Abstract] [Full Text] [Related] [New Search]