These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of reduced, oxidized, and protein-bound glutathione in human plasma with precolumn derivatization with monobromobimane and liquid chromatography. Author: Svardal AM, Mansoor MA, Ueland PM. Journal: Anal Biochem; 1990 Feb 01; 184(2):338-46. PubMed ID: 2327578. Abstract: This assay measures reduced (GSH), oxidized (GSSG, GSSR), and protein-bound (glutathione-protein mixed disulfides, ProSSG) glutathione in human plasma. Oxidized glutathione and ProSSG are converted to GSH in the presence of NaBH4, and, after precolumn derivatization with monobromobimane, GSH is quantitated by reversed-phase liquid chromatography and fluorescence detection. The NaBH4 concentration is optimized so that total recovery of oxidized glutathione is obtained and no interference with the formation/stability of the GSH-bimane adduct occurs. The presence of 50 microM dithioerythritol prevents reduced recovery at low concentrations of GSH, and the standard curve for GSH is linear over a wide concentration range and is super-imposed upon that obtained with GSSG. Selective determination of oxidized glutathione exploits the fact that N-ethylmaleimide (NEM) blocks free sulfhydryl groups and excess NEM is inactivated by the subsequent addition of NaBH4. To measure total glutathione including the protein-bound forms, the protein is solubilized with dimethyl sulfoxide, which is compatible with the other reagents and slightly increases the yield of the fluorescent GSH derivative. The assay is characterized by a sensitivity (less than 2 pmol) sufficiently high to detect the various forms of glutathione in plasma, by an analytical recovery of GSH and GSSG close to 100%, and by a within-day precision corresponding to a coefficient of variation of 7%. The assay was used to determine the dynamic relationships among various glutathione species in human plasma.[Abstract] [Full Text] [Related] [New Search]