These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pepsin is nitrated in the rat stomach, acquiring antiulcerogenic activity: a novel interaction between dietary nitrate and gut proteins. Author: Rocha BS, Gago B, Barbosa RM, Lundberg JO, Mann GE, Radi R, Laranjinha J. Journal: Free Radic Biol Med; 2013 May; 58():26-34. PubMed ID: 23277149. Abstract: Dietary nitrate is reduced to nitrite and nitric oxide ((•)NO) in the gut, producing reactive species able to nitrate proteins and lipids. We investigated intragastric production of (•)NO and nitrating agents in vivo by examining selective nitration of pepsinogen and pepsin. We further addressed the functional impact of nitration on peptic activity by evaluating the progression of secretagogue-induced ulcers. Pepsinogen nitration was assessed in healthy and diclofenac-induced ulcerated rat stomachs. Both groups were fed nitrite or water by oral gavage. Protein nitration was studied by immunofluorescence and immunoprecipitation. In parallel experiments, pentagastrin was administered to rats and nitrite was then instilled intragastrically. (•)NO levels were measured before and after nitrite administration by chemiluminescence. Macroscopic damage was assessed and nitrated pepsin was examined in the margin of ulcers. Protein nitration was detected physiologically in the stomach of healthy animals. Nitrite had a dual effect on intragastric nitration: overall nitration was decreased under physiological conditions but enhanced by acute inflammation. Pepsin and pepsinogen were also nitrated via a nitrite-dependent pathway. Nitration of both pepsin and its zymogen led to decreased peptic activity in response to classical substrates (e.g., collagen). Under conditions of acute ulceration, nitrite-dependent pepsin nitration prevented the development of gastric ulcers. Dietary nitrite generates nitrating agents in the stomach in vivo, markedly decreasing peptic activity. Under inflammatory and ulcerogenic conditions pepsin nitration attenuates the progression of gastric ulceration. These results suggest that dietary nitrite-dependent nitration of pepsin may have a novel antiulcerogenic effect in vivo.[Abstract] [Full Text] [Related] [New Search]