These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields. Author: Manca F, Giordano S, Palla PL, Cleri F, Colombo L. Journal: J Chem Phys; 2012 Dec 28; 137(24):244907. PubMed ID: 23277956. Abstract: Recent developments of microscopic mechanical experiments allow the manipulation of individual polymer molecules in two main ways: uniform stretching by external forces and non-uniform stretching by external fields. Many results can be thereby obtained for specific kinds of polymers and specific geometries. In this work, we describe the non-uniform stretching of a single, non-branched polymer molecule by an external field (e.g., fluid in uniform motion, or uniform electric field) by a universal physical framework, which leads to general conclusions on different types of polymers. We derive analytical results both for the freely-jointed chain and the worm-like chain models based on classical statistical mechanics. Moreover, we provide a Monte Carlo numerical analysis of the mechanical properties of flexible and semiflexible polymers anchored at one end. The simulations confirm the analytical achievements, and moreover allow to study the situations where the theory cannot provide explicit and useful results. In all cases, we evaluate the average conformation of the polymer and its fluctuation statistics as a function of the chain length, bending rigidity, and field strength.[Abstract] [Full Text] [Related] [New Search]