These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold.
    Author: Marchi AN, Saaem I, Tian J, LaBean TH.
    Journal: ACS Nano; 2013 Feb 26; 7(2):903-10. PubMed ID: 23281627.
    Abstract:
    Although structural DNA nanotechnology, and especially scaffolded DNA origami, hold great promise for bottom-up fabrication of novel nanoscale materials and devices, concerns about scalability have tempered widespread enthusiasm. Here we report a single-pot reaction where both strands of double-stranded M13-bacteriophage DNA are simultaneously folded into two distinct shapes that then heterodimerize with high yield. The fully addressable, two-dimensional heterodimer DNA origami, with twice the surface area of standard M13 origami, formed in high yield (81% of the well-formed monomers undergo dimerization). We also report the concurrent production of entire sets of staple strands by a unique, nicking strand-displacement amplification (nSDA) involving reusable surface-bound template strands that were synthesized in situ using a custom piezoelectric inkjet system. The combination of chip-based staple strand production, double-sized origami, and high-yield one-pot assembly markedly increases the useful scale of DNA origami.
    [Abstract] [Full Text] [Related] [New Search]