These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The relationship between post-tetanic potentiation of motor units and myosin isoforms in mouse soleus muscle.
    Author: Parry DJ, DiCori S.
    Journal: Can J Physiol Pharmacol; 1990 Jan; 68(1):51-6. PubMed ID: 2328443.
    Abstract:
    Post-tetanic potentiation was measured in motor units, isolated functionally by ventral root splitting, of soleus and extensor digitorum longus muscles of mouse. All motor units from the extensor digitorum longus had times to peak twitch tension less than 13 ms; there was a linear relationship between time to peak tension and post-tetanic potentiation, with the faster units exhibiting greater potentiation. When soleus motor units were similarly analyzed, it appeared that there may be two distinct populations of units. Those units with times to peak tension less than 13 ms were virtually indistinguishable from those of extensor digitorum longus. On the other hand, the slope of the relationship between post-tetanic potentiation and time to peak tension was significantly lower for soleus units with times to peak tension of 13 ms or more. Approximately three-quarters of the soleus units were of the latter slow type, whereas only one-half of the muscle fibres could be classified as type I by means of immunohistochemistry, suggesting that the myosin heavy chain may not be the major determinant of post-tetanic potentiation. Single, chemically skinned fibres of soleus were analyzed for myosin heavy and light chain components by polyacrylamide gel electrophoresis. All fibres with type I heavy chain contained only the two slow light chains. On the other hand, almost all of the fibres with type IIA myosin heavy chain contained both fast and slow light chains. It is suggested that the discrepancy between the proportions of physiologically "fast" motor units and histochemical type IIA fibres may be the consequence of variable amounts of slow light chain associated with the fast IIA myosin heavy chain.
    [Abstract] [Full Text] [Related] [New Search]