These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Variation in the leaf δ(13)C is correlated with salinity tolerance under elevated CO(2) concentration.
    Author: del Amor FM.
    Journal: J Plant Physiol; 2013 Feb 15; 170(3):283-90. PubMed ID: 23286998.
    Abstract:
    Increasing atmospheric CO(2) concentration is expected to impact agricultural systems through a direct effect on leaf gas exchange and also due to effects on the global availability of good-quality water as a result of climate warming. Thus, the planning of land use for agriculture requires new tools to identify the capability of current cultivars to adapt to growth restrictions under new ambient conditions. We hypothesized that salinity stress may produce a specific pattern of carbon isotopic composition (δ(13)C) in tomato (Solanum lycopersicum L.) at elevated CO(2) concentration ([CO(2)]) that could be used in the breeding of salinity tolerance in a near-future climate scenario. Five commercial tomato cultivars were evaluated at elevated (800 μmol mol(-1)) or standard (400 μmol mol(-1)) [CO(2)], being irrigated with a nutrient solution containing 0, 60 or 120 mM NaCl. The biomass enhanced ratio, leaf net CO(2) assimilation and stomatal conductance, leaf NO(3)(-) and Cl(-) concentrations and leaf free amino acid profile were analyzed in relation to the pattern of δ(13)C, under different saline stress conditions. The results indicate that at high [CO(2)]: (i) salinity tolerance was enhanced, but the response was strongly cultivar dependent, (ii) leaf NO(3)(-) concentration was increased whilst Cl(-) and proline concentrations decreased, and (iii) leaf δ(13)C was highly correlated with plant dry matter accumulation and with leaf proline concentration, leaf gas exchange and ion concentrations. This study shows that δ(13)C is a useful tool for the determination of the salinity tolerance of tomato at high [CO(2)], as an integrative parameter of the stress period, and was validated by traditional physiological plant stress traits.
    [Abstract] [Full Text] [Related] [New Search]