These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural and compositional characterization of ultrathin titanium oxide films grown on Pt3Ti(111).
    Author: Le Moal S, Moors M, Essen JM, Breinlich C, Becker C, Wandelt K.
    Journal: J Phys Condens Matter; 2013 Jan 30; 25(4):045013. PubMed ID: 23288493.
    Abstract:
    We have investigated the growth of ultrathin titanium oxide (TiO(x)) films on a Pt(3)Ti(111) single crystal surface as a function of oxidation temperature (300-1000 K) and oxygen exposure (up to 4500 l) by means of Auger electron spectroscopy, low-energy electron diffraction, ultraviolet photoelectron spectroscopy and high-resolution electron energy loss spectroscopy (HREELS). Both the surface composition and the surface structure of the resulting TiO(x) films exhibit a strong dependence on the preparation conditions. Loss of the chemical order and Ti segregation are observed at the Pt(3)Ti(111) surface upon oxygen exposures of more than 135 l at 1000 K. Increasing oxygen exposure enhances Ti segregation and oxide growth. At a threshold of ≈220 l (at 1000 K) a transition in the oxide structure occurs, namely from a (6 × 3√3) rectangular structure (a = 16.6 Å, b = 14.4 Å) below 220 l to a (7 × 7)R21.8° hexagonal structure (a = b = 19.3 Å) above 220 l. Two additional incommensurate rectangular metastable structures are observed for the highest oxygen exposures (above 900 l) at intermediate oxidation temperatures (800-900 K). In all cases the changes in the valence band spectra and the work function with respect to the clean Pt(3)Ti(111) surface are independent of the chosen oxidation parameters. Based on their HREELS spectra we identify the (6 × 3√3) and (7 × 7)R21.8° structures grown at 1000 K with a stoichiometric TiO phase, while the other and less stable oxide phases grown at 800-900 K exhibit more complex phonon structures that could not simply be associated with any of the stoichiometric phases TiO, Ti(2)O(3) or TiO(2). Our results are rather similar to those found by Granozzi et al for the deposition of Ti onto a Pt(111) surface in an oxygen atmosphere, except a few interesting deviations as a consequence of the different preparation conditions.
    [Abstract] [Full Text] [Related] [New Search]