These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lercanidipine and labedipinedilol--A attenuate lipopolysaccharide/interferon-γ-induced inflammation in rat vascular smooth muscle cells through inhibition of HMGB1 release and MMP-2, 9 activities. Author: Yeh JL, Hsu JH, Liang JC, Chen IJ, Liou SF. Journal: Atherosclerosis; 2013 Feb; 226(2):364-72. PubMed ID: 23290263. Abstract: OBJECTIVE: Inflammation is an important molecular basis of atherosclerosis. Recent studies have shown that dihydropyridine calcium channel blockers (CCBs) can exert potent anti-inflammatory effects in models of vascular dysfunction. The purpose of the present study was to evaluate anti-inflammatory effects and mechanisms of lercanidipine and labedipinedilol-A, new generation dihydropyridine CCBs, in rat vascular smooth muscle cells (VSMCs) exposed to lipopolysaccharide (LPS) and interferon-γ (IFN-γ). METHODS AND RESULTS: MTT, Griess reagent, RT-PCR, ELISA, gelatin zymography, immunocytochemistry and Western blotting were employed. We found that lercanidipine and labedipinedilol-A attenuated production of NO, ROS and TNF-α from LPS/IFN-γ-stimulated VSMCs. In addition, they both diminished the LPS/IFN-γ-induced expression of iNOS protein and mRNA, with attenuation of HMGB1 cytosolic translocation and subsequent extracellular release. Furthermore, they down-regulated MMP-2/MMP-9 activities, whereas expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), an inhibitor of MMP-9, was up-regulated. Finally, we found that lercanidipine and labedipinedilol-A inhibited the nuclear translocation of NF-κB and suppressed the phosphorylation of JNK, p38 MAPK and Akt. CONCLUSION: Lercanidipine and labedipinedilol-A can exert their anti-inflammatory effects through suppression of NO, ROS and TNF-α through down-regulation of iNOS, MMP-2/MMP-9, and HMGB1, with inhibition of signaling transduction of MAPKs, Akt/IkB-α and NF-κB pathways. These findings implicate a valuable role of new generation dihydropyridine CCBs lercanidipine and labedipinedilol-A for the treatment of inflammatory vascular diseases.[Abstract] [Full Text] [Related] [New Search]