These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Central Asia.
    Author: Stegnar P, Shishkov I, Burkitbayev M, Tolongutov B, Yunusov M, Radyuk R, Salbu B.
    Journal: J Environ Radioact; 2013 Sep; 123():3-13. PubMed ID: 23291151.
    Abstract:
    An assessment of the radiological situation due to exposure to gamma radiation, radon and thoron was carried out at selected former uranium mining and processing sites in the Central Asian countries of Kazakhstan, Kyrgyzstan, Uzbekistan and Tajikistan. Gamma dose rate measurements were made using various field instruments and radon/thoron measurements were carried out using discriminative radon ((222)Rn)/thoron ((220)Rn) solid state nuclear track detectors (SSNTD). The detectors were exposed for an extended period of time, including at least three seasonal periods in a year, in different outdoor and indoor public and residential environments at the selected uranium legacy sites. The results showed that gamma, Rn and Tn doses were in general low, which consequently implies a low/relatively low radiological risk. The major radiation hazard is represented by abandoned radioactive filtration material that was being used as insulation by some Minkush residents (Kyrgyzstan) for a longer period of time. Annual radiation doses of several hundred mSv could be received as a consequence of using this material domestically. In addition, the gamma and Rn/Tn dose rates at Digmai, Tajikistan, could reach values of several 10 mSv/a. The doses of ionizing radiation deriving from external radiation (gamma dose rate), indoor radon and thoron with their short-lived progenies in several cases exceeded the recommended annual effective dose threshold level of 10 mSv. At none of the sites investigated did the individual annual effective doses exceed 30 mSv, the internationally recommended value for considering intervention. Current doses of ionizing radiation do not represent a serious hazard to the health of the resident public, but this issue should be adequately addressed to further reduce needless exposure of the resident public to ionizing radiation.
    [Abstract] [Full Text] [Related] [New Search]