These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Concurrent estimation of amlodipine besylate, hydrochlorothiazide and valsartan by RP-HPLC, HPTLC and UV-spectrophotometry. Author: Sharma M, Kothari C, Sherikar O, Mehta P. Journal: J Chromatogr Sci; 2014 Jan; 52(1):27-35. PubMed ID: 23293040. Abstract: Accurate, sensitive and reproducible reversed-phase high-performance liquid chromatography (RP-HPLC), high-performance thin-layer chromatography (HPTLC) and ultraviolet (UV) spectrophopometric methods were developed for the concurrent estimation of amlodipine besylate (AMLO), hydrochlorothiazide (HCTZ) and valsartan (VALS) in bulk and combined tablet dosage forms. For the RP-HPLC method, separation was achieved on a C18 column using potassium dihydrogen orthophosphate buffer (50 mM, pH 3.7) with 0.2% triethylamine as the modifier and acetonitrile in the ratio of 56:44 (v/v) as the mobile phase. Quantification was achieved using a photodiode array detector at 232 nm over a concentration range of 2-25 µg/mL for AMLO, 5-45 µg/mL for HCTZ and 20-150 µg/mL for VALS. For the HPTLC method, the drugs were separated by using ethyl acetate-methanol-toluene-ammonia (7.5:3:2:0.8, v/v/v/v) as the mobile phase. Quantification was achieved using UV detection at 242 nm over a concentration range of 100-600 ng/spot for AMLO, 150-900 ng/spot for HCTZ and 1,200-3,200 ng/spot for VALS. The UV-spectrophotometric simultaneous equation method was based on the measurement of absorbance at three wavelengths; i.e., at 237.6 nm (λmax of AMLO), 270.2 nm (λmax of HCTZ) and 249.2 nm (λmax of VALS) in methanol. Quantification was achieved over the concentration range of 2-20 µg/mL for AMLO, 5-25 µg/mL HCTZ and 10-50 µg/mL for VALS. All methods were validated according to International Conference on Harmonization guidelines and successfully applied to marketed pharmaceutical formulations. Additionally, the three methods were compared statistically by an analysis of variance test, which revealed no significant difference between the proposed methods with respect to accuracy and precision.[Abstract] [Full Text] [Related] [New Search]