These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Serotonin 5-HT1A receptor in infancy-onset aggression: comparison with genetically defined aggression in adult rats. Author: Naumenko VS, Kozhemyakina RV, Plyusnina IF, Kulikov AV, Popova NK. Journal: Behav Brain Res; 2013 Apr 15; 243():97-101. PubMed ID: 23299041. Abstract: Antisocial aggressive behavior in adolescents represents growing clinical and social problem. Previously the implication of 5-HT1A receptor in the regulation of fear-induced aggression was shown. Here, the involvement of 5-HT1A receptor in infancy-onset genetically defined aggression was studied on Norway rats selectively bred for high level or for the lack of aggression toward man. The aggressive behavior and the expression of 5-HT1A receptor gene, 5-HT1A receptor density and functional activity were determined in infant (15-day-old) and adult rats. Considerable differences in aggressive response to man between infant rats of aggressive (A) and nonaggressive (NA) strains were found. In contrast to infant NA rats, A infants elicited marked aggressive response to handling, although its expression was less than in adult A rats. 5-HT1A receptor agonist 8-OH-DPAT (0.2 and 0.5mg/kg) decreased aggressive behavior in both A infant and adult rats. The desensitization of 5-HT1A receptors in the brain of A infant and adult rats was revealed. In contrast to decreased 5-HT1A gene expression in the midbrain of A adult rats, the 5-HT1A gene expression in the midbrain of infant rats did not differ between A and NA strains. There was no difference in 5-HT1A receptor density in infant rats. The data showed (1) the implication of 5-HT1A receptor in genetically defined infancy-onset fear-induced aggression, (2) the desensitization of 5-HT1A receptors as essential factor in infancy-onset aggression, and (3) the increased complexity of 5-HT-ergic control of aggressive behavior in adult rats with the involvement of 5-HT1A gene and the density of 5-HT1A receptors.[Abstract] [Full Text] [Related] [New Search]