These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma.
    Author: Liang Y, Zheng T, Song R, Wang J, Yin D, Wang L, Liu H, Tian L, Fang X, Meng X, Jiang H, Liu J, Liu L.
    Journal: Hepatology; 2013 May; 57(5):1847-57. PubMed ID: 23299930.
    Abstract:
    UNLABELLED: The increasing incidence of hepatocellular carcinoma (HCC) is of great concern not only in the United States but throughout the world. Although sorafenib, a multikinase inhibitor with antiangiogenic and antiproliferative effects, currently sets the new standard for advanced HCC, tumor response rates are usually quite low. An understanding of the underlying mechanisms for sorafenib resistance is critical if outcomes are to be improved. In this study we tested the hypothesis that hypoxia caused by the antiangiogenic effects of sustained sorafenib therapy could induce sorafenib resistance as a cytoprotective adaptive response, thereby limiting sorafenib efficiency. We found that HCCs, clinically resistant to sorafenib, exhibit increased intratumor hypoxia compared with HCCs before treatment or HCCs sensitive to sorafenib. Hypoxia protected HCC cells against sorafenib and hypoxia-inducible factor 1 (HIF-1α) was required for the process. HCC cells acquired increased P-gp expression, enhanced glycolytic metabolism, and increased nuclear factor kappa B (NF-κB) activity under hypoxia. EF24, a molecule having structural similarity to curcumin, could synergistically enhance the antitumor effects of sorafenib and overcome sorafenib resistance through inhibiting HIF-1α by sequestering it in cytoplasm and promoting degradation by way of up-regulating Von Hippel-Lindau tumor suppressor (VHL). Furthermore, we found that sustained sorafenib therapy led to increased intratumor hypoxia, which was associated with sorafenib sensitivity in HCC subcutaneous mice tumor models. The combination of EF24 and sorafenib showed synergistically effects against metastasis both in vivo and in vitro. Synergistic tumor growth inhibition effects were also observed in subcutaneous and orthotopic hepatic tumors. CONCLUSION: Hypoxia induced by sustained sorafenib treatment confers sorafenib resistance to HCC through HIF-1α and NF-κB activation. EF24 overcomes sorafenib resistance through VHL-dependent HIF-1α degradation and NF-κB inactivation. EF24 in combination with sorafenib represents a promising strategy for HCC.
    [Abstract] [Full Text] [Related] [New Search]