These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interplay between calmodulin and phosphatidylinositol 4,5-bisphosphate in Ca2+-induced inactivation of transient receptor potential vanilloid 6 channels.
    Author: Cao C, Zakharian E, Borbiro I, Rohacs T.
    Journal: J Biol Chem; 2013 Feb 22; 288(8):5278-90. PubMed ID: 23300090.
    Abstract:
    The epithelial Ca(2+) channel transient receptor potential vanilloid 6 (TRPV6) undergoes Ca(2+)-induced inactivation that protects the cell from toxic Ca(2+) overload and may also limit intestinal Ca(2+) transport. To dissect the roles of individual signaling pathways in this phenomenon, we studied the effects of Ca(2+), calmodulin (CaM), and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in excised inside-out patches. The activity of TRPV6 strictly depended on the presence of PI(4,5)P(2), and Ca(2+)-CaM inhibited the channel at physiologically relevant concentrations. Ca(2+) alone also inhibited TRPV6 at high concentrations (IC(50) = ∼20 μM). A double mutation in the distal C-terminal CaM-binding site of TRPV6 (W695A/R699E) essentially eliminated inhibition by CaM in excised patches. In whole cell patch clamp experiments, this mutation reduced but did not eliminate Ca(2+)-induced inactivation. Providing excess PI(4,5)P(2) reduced the inhibition by CaM in excised patches and in planar lipid bilayers, but PI(4,5)P(2) did not inhibit binding of CaM to the C terminus of the channel. Overall, our data show a complex interplay between CaM and PI(4,5)P(2) and show that Ca(2+), CaM, and the depletion of PI(4,5)P(2) all contribute to inactivation of TRPV6.
    [Abstract] [Full Text] [Related] [New Search]