These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic diversity in Sargasso Sea bacterioplankton.
    Author: Giovannoni SJ, Britschgi TB, Moyer CL, Field KG.
    Journal: Nature; 1990 May 03; 345(6270):60-3. PubMed ID: 2330053.
    Abstract:
    Bacterioplankton are recognized as important agents of biogeochemical change in marine ecosystems, yet relatively little is known about the species that make up these communities. Uncertainties about the genetic structure and diversity of natural bacterioplankton populations stem from the traditional difficulties associated with microbial cultivation techniques. Discrepancies between direct counts and plate counts are typically several orders of magnitude, raising doubts as to whether cultivated marine bacteria are actually representative of dominant planktonic species. We have phylogenetically analysed clone libraries of eubacterial 16S ribosomal RNA genes amplified from natural populations of Sargasso Sea picoplankton by the polymerase chain reaction. The analysis indicates the presence of a novel microbial group, the SAR11 cluster, which appears to be a significant component of this oligotrophic bacterioplankton community. A second cluster of lineages related to the oxygenic phototrophs--cyanobacteria, prochlorophytes and chloroplasts--was also observed. However, none of the genes matched the small subunit rRNA sequences of cultivated marine cyanobacteria from similar habitats. The diversity of 16S rRNA genes observed within the clusters suggests that these bacterioplankton may be consortia of independent lineages sharing surprisingly distant common ancestors.
    [Abstract] [Full Text] [Related] [New Search]