These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relationships between rapid isometric torque characteristics and vertical jump performance in division I collegiate American football players: influence of body mass normalization. Author: Thompson BJ, Ryan ED, Sobolewski EJ, Smith DB, Akehi K, Conchola EC, Buckminster T. Journal: J Strength Cond Res; 2013 Oct; 27(10):2737-42. PubMed ID: 23302753. Abstract: The purpose of the present study was to examine the relationships between absolute and body mass-normalized rapid isometric torque variables and vertical jump (VJ) performance of the leg extensors and flexors in elite National Collegiate Athletic Association Division I Football Bowl Subdivision collegiate American football players. Thirty-one players performed isometric maximal voluntary contractions of the leg extensor and flexor muscle groups and a countermovement VJ. Rate of torque development (RTD) and the contractile impulse (IMPULSE) were determined from 0 to 30, 0 to 50, 0 to 100, and 0 to 200 milliseconds from the onset of muscular contraction. The relationships between absolute and normalized rapid torque variables and VJ performance were assessed using correlation coefficients (r). There were no significant correlations (p > 0.05) observed between the absolute rapid torque variables and VJ performance, except for leg flexion RTD at 0-200 milliseconds (p = 0.024). All normalized rapid torque variables of the leg extensors and flexors were significantly correlated to VJ performance (p ≤ 0.001-0.026). These findings indicated that normalizing rapid torque variables to body mass improves the relationships between isometric rapid torque variables and VJ performance and normalized leg extension and flexion are both similarly related to VJ performance. Strength and conditioning professionals may use these findings in an attempt to identify and monitor dynamic sport performance. Furthermore, future studies examining the relationship between dynamic on the field performances and laboratory-based isometric strength testing may consider including normalized rapid torque variables.[Abstract] [Full Text] [Related] [New Search]