These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Computational screening of functional groups for ammonia capture in metal-organic frameworks.
    Author: Kim KC, Yu D, Snurr RQ.
    Journal: Langmuir; 2013 Feb 05; 29(5):1446-56. PubMed ID: 23305323.
    Abstract:
    Metal-organic frameworks (MOFs) containing functional groups that strongly bind ammonia could be promising candidates for ammonia capture from air. To identify functional groups that preferentially bind ammonia versus water, we used quantum chemical methods to calculate the binding energies of ammonia and water with 21 different functional groups attached to aromatic rings, such as are common in MOF linkers. Among the functional groups studied, R-COOCu and R-COOAg are the top two candidates for ammonia capture under both dry and humid conditions. Orbital and charge analyses were performed to provide additional insight into observed behavior and trends. For Bronsted acid functional groups, increasing acidity and dielectric constant promote protonation of ammonia, as expected.
    [Abstract] [Full Text] [Related] [New Search]