These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. Author: Wang XH, Zhang G, Fan YY, Yang X, Sui WJ, Lu XX. Journal: J Microbiol Methods; 2013 Mar; 92(3):231-5. PubMed ID: 23305925. Abstract: Rapid identification of bacterial pathogens from clinical specimens is essential to establish an adequate empirical antibiotic therapy to treat urinary tract infections (UTIs). We used matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) combined with UF-1000i urine flow cytometry of urine specimens to quickly and accurately identify bacteria causing UTIs. We divided each urine sample into three aliquots for conventional identification, UF-1000i, and MALDI-TOF MS, respectively. We compared the results of the conventional method with those of MALDI-TOF MS combined with UF-1000i, and discrepancies were resolved by 16S rRNA gene sequencing. We analyzed 1456 urine samples from patients with UTI symptoms, and 932 (64.0%) were negative using each of the three testing methods. The combined method used UF-1000i to eliminate negative specimens and then MALDI-TOF MS to identify the remaining positive samples. The combined method was consistent with the conventional method in 1373 of 1456 cases (94.3%), and gave the correct result in 1381 of 1456 cases (94.8%). Therefore, the combined method described here can directly provide a rapid, accurate, definitive bacterial identification for the vast majority of urine samples, though the MALDI-TOF MS software analysis capabilities should be improved, with regard to mixed bacterial infection.[Abstract] [Full Text] [Related] [New Search]