These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Magnetic order, field-induced phase transitions and magnetoresistance in the intercalated compound Fe0.5TiS2. Author: Baranov NV, Sherokalova EM, Selezneva NV, Proshkin AV, Gubkin AF, Keller L, Volegov AS, Proskurina EP. Journal: J Phys Condens Matter; 2013 Feb 13; 25(6):066004. PubMed ID: 23306103. Abstract: Measurements of the magnetic susceptibility, magnetization, electrical resistivity and neutron diffraction have been performed for the compound Fe(0.5)TiS(2) in which Fe atoms are intercalated between S-Ti-S tri-layers. It has been shown that this compound with a monoclinic crystal structure exhibits an antiferromagnetic (AF) ground state below the Néel temperature T(N) ≈ 140 K. Small deviations from the stoichiometry and some disordering effects caused by the additional low-temperature heat treatment do not affect substantially the AF state in Fe(0.5)TiS(2). According to neutron diffraction data the magnetic structure at 2 K is described by the propagation vector k = (1/4,0,1/4). The Fe magnetic moments with a value of (2.9 ± 0.1) μ(B) are directed at an angle of (78.5 ± 1.8)° to the layers. Application of the magnetic field at T < T(N) induces a metamagnetic phase transition to the ferromagnetic (F) state, which is accompanied by the large magnetoresistance effect (|Δρ/ρ| up to 27%). Below 100 K, the field-induced AF-F transition is found to be irreversible, as evidenced by magnetoresistance and neutron diffraction measurements. The magnetization reversal in the metastable F state is accompanied at low temperatures by substantial hysteresis (ΔH ~ 100 kOe) which is associated with the Ising character of Fe ions.[Abstract] [Full Text] [Related] [New Search]