These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A neuronal signaling pathway of CaMKII and Gqα regulates experience-dependent transcription of tph-1. Author: Qin Y, Zhang X, Zhang Y. Journal: J Neurosci; 2013 Jan 16; 33(3):925-35. PubMed ID: 23325232. Abstract: Dynamic serotonin biosynthesis is important for serotonin function; however, the mechanisms that underlie experience-dependent transcriptional regulation of the rate-limiting serotonin biosynthetic enzyme tryptophan hydroxylase (TPH) are poorly understood. Here, we characterize the molecular and cellular mechanisms that regulate increased transcription of Caenorhabditis elegans tph-1 in a pair of serotonergic neurons ADF during an aversive experience with pathogenic bacteria, a common environmental peril for worms. Training with pathogenic bacteria induces a learned aversion to the smell of the pathogen, a behavioral plasticity that depends on the serotonin signal from ADF neurons. We demonstrate that pathogen training increases ADF neuronal activity. While activating ADF increases tph-1 transcription, inhibiting ADF activity abolishes the training effect on tph-1, demonstrating the dependence of tph-1 transcriptional regulation on ADF neural activity. At the molecular level, the C. elegans homolog of CaMKII, UNC-43, functions cell-autonomously in ADF neurons to generate training-dependent enhancement in neuronal activity and tph-1 transcription, and this cell-autonomous function of UNC-43 is required for learning. Furthermore, selective expression of an activated form of UNC-43 in ADF neurons is sufficient to increase ADF activity and tph-1 transcription, mimicking the training effect. Upstream of ADF, the Gqα protein EGL-30 facilitates training-dependent induction of tph-1 by functional regulation of olfactory sensory neurons, which underscores the importance of sensory experience. Together, our work elucidates the molecular and cellular mechanisms whereby experience modulates tph-1 transcription.[Abstract] [Full Text] [Related] [New Search]