These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel digestion method based on a choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples.
    Author: Habibi E, Ghanemi K, Fallah-Mehrjardi M, Dadolahi-Sohrab A.
    Journal: Anal Chim Acta; 2013 Jan 31; 762():61-7. PubMed ID: 23327946.
    Abstract:
    A novel and efficient digestion method based on choline chloride-oxalic acid (ChCl-Ox) deep eutectic solvent (DES) was developed for flame atomic absorption spectrometry (FAAS) determination of Cu, Zn, and Fe in biological fish samples. Key parameters that influence analyte recovery were investigated and optimized, using the fish protein certified reference material (CRM, DORM-3) throughout the procedure. In this method, 100 mg of the sample was dissolved in ChCl-Ox (1:2, molar ratio) at 100°C for 45 min. Then, 5.0 mL HNO(3) (1.0 M) was added. After centrifugation, the supernatant solution was filtered, diluted to a known volume, and analyzed by FAAS. Under optimized conditions, an excellent agreement between the obtained results and the certified values was observed, using Student's t-test (P=0.05); the extraction recovery of the all elements was greater than 95.3%. The proposed method was successfully applied to the determination of analytes in different tissues (muscle, liver, and gills) having a broad concentration range in a marine fish sample. The reproducibility of the method was validated by analyzing all samples by our method in a different laboratory, using inductively coupled plasma optical emission spectrometry (ICP-OES). For comparison, a conventional acid digestion (CAD) method was also used for the determination of analytes in all studied samples. The simplicity of the proposed experimental procedure, high extraction efficiency, short analysis time, lack of concentrated acids and oxidizing agents, and the use of safe and inexpensive components demonstrate the high potential of ChCl-Ox (1:2) for routine trace metal analysis in biological samples.
    [Abstract] [Full Text] [Related] [New Search]