These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro. Author: Patra AK, Yu Z. Journal: J Dairy Sci; 2013 Mar; 96(3):1782-92. PubMed ID: 23332846. Abstract: Coconut (CO) and fish (FO) oils were previously shown to inhibit rumen methanogenesis and biohydrogenation, which mitigates methane emission and helps improve beneficial fatty acids in meat and milk. This study aimed at investigating the comparative effects of CO and FO on the methanogenesis, fermentation, and microbial abundances and diversity in vitro rumen cultures containing different doses (0, 3.1, and 6.2 mL/L) of each oil and 400mg feed substrate using rumen fluid from lactating dairy cows as inocula. Increasing doses of CO and FO quadratically decreased concentrations of methane, but hydrogen concentrations were only increased quadratically by CO. Both oils linearly decreased dry matter and neutral detergent fiber digestibility of feeds but did not affect the concentration of total volatile fatty acids. However, CO reduced acetate percentage and acetate to propionate ratio and increased the percentages of propionate and butyrate to a greater extent than FO. Ammonia concentration was greater for CO than FO. As determined by quantitative real-time PCR, FO had greater inhibition to methanogens than CO, but the opposite was true for protozoal, Ruminococcus flavefaciens, and Fibrobacter succinogenes. Ruminococcus albus was not affected by either oil. Denaturing gradient gel electrophoresis (DGGE) profiles revealed that bacterial and archaeal community composition were changed differently by oil type. Based on Pareto-Lorenz evenness curve analysis of the DGGE profiles, CO noticeably changed the functional organization of archaea compared with FO. In conclusion, although both CO and FO decreased methane concentrations to a similar extent, the mode of reduction and the effect on abundances and diversity of archaeal and bacterial populations differed between the oils. Thus, the use of combination of CO and FO at a low dose may additively lower methanogenesis in the rumen while having little adverse effect on rumen fermentation.[Abstract] [Full Text] [Related] [New Search]