These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Population pharmacokinetics of escalating doses of caspofungin in a phase II study of patients with invasive aspergillosis.
    Author: Würthwein G, Cornely OA, Trame MN, Vehreschild JJ, Vehreschild MJ, Farowski F, Müller C, Boos J, Hempel G, Hallek M, Groll AH.
    Journal: Antimicrob Agents Chemother; 2013 Apr; 57(4):1664-71. PubMed ID: 23335740.
    Abstract:
    Caspofungin (CAS) is approved for second-line management of proven or probable invasive aspergillosis at a dose of 50 mg once daily (QD). Preclinical and limited clinical data support the concept of the dose-dependent antifungal efficacy of CAS with preservation of its favorable safety profile. Little is known, however, about the pharmacokinetics (PKs) of higher doses of CAS in patients. In a formal multicenter phase II dose-escalation study, CAS was administered as a 2-h infusion at doses ranging from 70 to 200 mg QD. CAS PK sampling (n = 468 samples) was performed on day 1 and at peak and trough time points on days 4, 7, 14, and 28 (70 mg, n = 9 patients; 100 mg, n = 8 patients; 150 mg, n = 9 patients; 200 mg, n = 20 patients; total, n = 46 patients). Drug concentrations in plasma were measured by liquid chromatography tandem mass spectroscopy. Population pharmacokinetic analysis (PopPK) was performed using NONMEM (version 7) software. Model evaluation was performed using bootstrap analysis, prediction-corrected visual predictive check (pcVPC), as well as standardized visual predictive check (SVPC). The four investigated dose levels showed no difference in log-transformed dose-normalized trough levels of CAS (analysis of variance). CAS concentration data fitted best to a two-compartment model with a proportional-error model, interindividual variability (IIV) fitted best on clearance (CL), central and peripheral volume of distribution (V(1) and V(2), respectively) covariance fitted best on CL and V(1), interoccasion variability (IOV) fitted best on CL, and body weight fitted best as a covariate on CL and V(1) (CL, 0.411 liters/h ± 29% IIV; IOV on CL, 16%; V(1), 5.785 liters ± 29% IIV; intercompartmental clearance, 0.843 liters/h; V2, 6.53 liters ± 67% IIV). None of the other examined covariates (dose level, gender, age, serum bilirubin concentration, creatinine clearance) improved the model further. Bootstrap results showed the robustness of the final PopPK model. pcVPC and SVPC showed the predictability of the model and further confirmed the linear PKs of CAS over the dosage range of 70 to 200 mg QD. On the basis of the final model, geometric mean simulated peak plasma levels at steady state ranged from 13.8 to 39.4 mg/liter (geometric coefficient of variation, 31%), geometric mean trough levels ranged from 4.2 to 12.0 mg/liter (49%), and geometric mean areas under the concentration-time curves ranged from 170 to 487 mg · h/liter (34%) for the dosage range of 70 to 200 mg QD. CAS showed linear PKs across the investigated dosage range of 70 to 200 mg QD. Drug exposure in the present study population was comparable to that in other populations. (This study has been registered with the European Union Drug Regulating Authorities Clinical Trials website under registration no. 2006-001936-30 and at ClinicalTrials.gov under registration no. NCT00404092.).
    [Abstract] [Full Text] [Related] [New Search]