These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heterogeneous catalysts need not be so "heterogeneous": monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. Author: Kang Y, Li M, Cai Y, Cargnello M, Diaz RE, Gordon TR, Wieder NL, Adzic RR, Gorte RJ, Stach EA, Murray CB. Journal: J Am Chem Soc; 2013 Feb 20; 135(7):2741-7. PubMed ID: 23351091. Abstract: Well-defined surfaces of Pt have been extensively studied for various catalytic processes. However, industrial catalysts are mostly composed of fine particles (e.g., nanocrystals), due to the desire for a high surface to volume ratio. Therefore, it is very important to explore and understand the catalytic processes both at nanoscale and on extended surfaces. In this report, a general synthetic method is described to prepare Pt nanocrystals with various morphologies. The synthesized Pt nanocrystals are further purified by exploiting the "self-cleaning" effect which results from the "colloidal recrystallization" of Pt supercrystals. The resulting high-purity nanocrystals enable the direct comparison of the reactivity of the {111} and {100} facets for important catalytic reactions. With these high-purity Pt nanocrystals, we have made several observations: Pt octahedra show higher poisoning tolerance in the electrooxidation of formic acid than Pt cubes; the oxidation of CO on Pt nanocrystals is structure insensitive when the partial pressure ratio p(O2)/p(CO) is close to or less than 0.5, while it is structure sensitive in the O(2)-rich environment; Pt octahedra have a lower activation energy than Pt cubes when catalyzing the electron transfer reaction between hexacyanoferrate (III) and thiosulfate ions. Through electrocatalysis, gas-phase-catalysis of CO oxidation, and a liquid-phase-catalysis of electron transfer reaction, we demonstrate that high quality Pt nanocrystals which have {111} and {100} facets selectively expose are ideal model materials to study catalysis at nanoscale.[Abstract] [Full Text] [Related] [New Search]