These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of a DNA-launched replicon as a vaccine for porcine reproductive and respiratory syndrome virus.
    Author: Pujhari S, Baig TT, Hansra S, Zakhartchouk AN.
    Journal: Virus Res; 2013 May; 173(2):321-6. PubMed ID: 23353778.
    Abstract:
    Though a modified live attenuated vaccine (MLV) is available against porcine reproductive and respiratory syndrome virus (PRRSV), its limitations in protective efficacy, safety and few others warrant the development of newer vaccines. In this study, we have constructed a propagation-defective DNA-launched PRRSV replicon as a vaccine candidate and evaluated its immunogenicity and protective efficacy in a group of pigs along with MLV vaccinated group. Our data showed that prior to the intranasal challenge with a homologous strain of PRRSV, only MLV vaccinated pigs developed antibody response measured by ELISA and none of the pigs in any group developed PRRSV neutralizing antibodies in serum. The MLV vaccinated group also showed high PRRSV-specific INF-γ response, whereas the replicon-vaccinated pigs showed low but detectable INF-γ response. After 14 days post challenge, all groups showed similar PRRSV-specific serum neutralizing titers and were positive for PRRSV-specific ELISA antibody. In addition, the replicon-vaccinated group showed a significant reduction in viremia in comparison to the control group. In conclusion, vaccination with the PRRSV DNA-launched replicon decreased the viremia and viral load in bronchoalveolar lavage fluids of the PRRSV-challenged pigs and increased numbers of IFN-γ producing cells. Thus, the vaccine is partially protective and is a potential vaccine candidate for future with further improvement. The possible means of improvement is the expression of immunostimulatory genes by the replicon. We demonstrated the feasibility of this approach by expression of a foreign gene encoding firefly luciferase after transfection of cultured cells with the replicon plasmid DNA.
    [Abstract] [Full Text] [Related] [New Search]