These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Study of spin-lattice and spin-spin relaxation times of 1H, 2H, and 17O in muscular water.
    Author: Fung BM, McGaughy TW.
    Journal: Biophys J; 1979 Nov; 28(2):293-303. PubMed ID: 233613.
    Abstract:
    Spin-lattice (T1) and spin-spin (T2) relaxation times of proton, deuteron, and oxygen-17 in muscle water have been measured at 9.21 MHz in the temperature range of 0 degree--40 degrees C. The values of the apparent activation energy for the three nuclei are (in kJ . mol-1) 9.1, 19, and 18 for 1/T1, and -1.3, 4.2, and 14 for 1/T2, respectively. The relatively small values for T2 for 1H and 2H and their low apparent activation energies are attributed to hydrogen exchange between water and proteins; this exchange does not affect the 17O relaxation. Quantitative calculations on deuteron T1 and oxygen-17 T1 and T2 have been made. The effect of surface-induced anisotropy on a minor fraction of water molecules is considered in some detail, and a new expression for its spectral density similar to that of liquid crystalline systems is applied in the calculation. It is suggested that water on the surfaces of macromolecules has a rotational correlation time of tau c approximately 1 x 10(-9) S, with a time constant of tau x approximately 3 x 10(-7) S, which is characteristic of the relaxation of the local structure.
    [Abstract] [Full Text] [Related] [New Search]