These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Epstein-Barr virus latent membrane protein 1 increases genomic instability through Egr-1-mediated up-regulation of activation-induced cytidine deaminase in B-cell lymphoma.
    Author: Kim JH, Kim WS, Park C.
    Journal: Leuk Lymphoma; 2013 Sep; 54(9):2035-40. PubMed ID: 23363221.
    Abstract:
    Epstein-Barr virus (EBV)-encoded latent membrane protein-1 (LMP1) is a transmembrane protein essential for EBV-induced immortalization and transformation of B cells. Activation-induced cytidine deaminase (AID) triggers somatic hypermutation and recombination, in turn contributing to lymphomagenesis. Here, we report an intracellular mechanism by which LMP1 contributes to B cell lymphomagenesis via AID expression. In our experiments, LMP1 increased AID mRNA expression and promoter activity. The AID promoter region contains a binding site for Egr-1, a prominent transcription factor that is reported to be up-regulated by LMP1. In promoter activity analysis, Egr-1 enhanced the reporter activity of the wild-type AID promoter, but not that containing a mutated Egr-1 binding site. Egr-1 knockdown abrogated LMP-1-mediated up-regulation of AID promoter reporter activity in EBV-negative BJAB cells and reduced AID promoter reporter activity in EBV-positive SKW6.4 cells. AID induced down-regulation of the nuclear factor-κB (NFκB) inhibitory tumor suppressor Rassf6, suggesting that AID functions as an upstream regulator of the NFκB inhibitory Rassf6. Moreover, Egr-1 expression was associated with an increased number of genomic lesions in genome-wide analysis using single nucleotide polymorphism (SNP) microarray and copy number variation (CNV). Collectively, LMP1 induces AID up-regulation and genomic instability via Egr-1. Increased AID expression may, in turn, promote down-regulation of the NFκB inhibitor, Rassf6, thereby further increasing the survival of genetically destabilized B-cell lymphoma cells.
    [Abstract] [Full Text] [Related] [New Search]