These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Predicting G-protein-coupled receptors families using different physiochemical properties and pseudo amino acid composition. Author: Rehman ZU, Mirza MT, Khan A, Xhaard H. Journal: Methods Enzymol; 2013; 522():61-79. PubMed ID: 23374180. Abstract: G-protein-coupled receptors (GPCRs) initiate signaling pathways via trimetric guanine nucleotide-binding proteins. GPCRs are classified based on their ligand-binding properties and molecular phylogenetic analyses. Nonetheless, these later analyses are in most case dependent on multiple sequence alignments, themselves dependent on human intervention and expertise. Alignment-free classifications of GPCR sequences, in addition to being unbiased, present many applications uncovering hidden physicochemical parameters shared among specific groups of receptors, to being used in automated workflows for large-scale molecular modeling applications. Current alignment-free classification methods, however, do not reach a full accuracy. This chapter discusses how GPCRs amino acid sequences can be classified using pseudo amino acid composition and multiscale energy representation of different physiochemical properties of amino acids. A hybrid feature extraction strategy is shown to be suitable to represent GPCRs and to be able to exploit GPCR amino acid sequence discrimination capability in spatial as well as transform domain. Classification strategies such as support vector machine and probabilistic neural network are then discussed in regards to GPCRs classification. The work of GPCR-Hybrid web predictor is also discussed.[Abstract] [Full Text] [Related] [New Search]