These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: New insights toward the discovery of antibacterial agents: multi-tasking QSBER model for the simultaneous prediction of anti-tuberculosis activity and toxicological profiles of drugs. Author: Speck-Planche A, Kleandrova VV, Cordeiro MN. Journal: Eur J Pharm Sci; 2013 Mar 12; 48(4-5):812-8. PubMed ID: 23376211. Abstract: Tuberculosis (TB) constitutes one of the most dangerous and serious health problems around the world. It is a very lethal disease caused by microorganisms of the genus mycobacterium, principally Mycobacterium tuberculosis (MTB) which affects humans. A very active field for the search of more efficient anti-TB chemotherapies is the use in silico methodologies for the discovery of potent anti-TB agents. The battle against MTB by using antimicrobial chemotherapies will depend on the design of new chemicals with high anti-TB activity and low toxicity as possible. Multi-target methodologies focused on quantitative-structure activity relationships (mt-QSAR) have played a very important role for the rationalization of drug design, providing a better understanding about the molecular patterns related with diverse pharmacological profiles including antimicrobial activity. Nowadays, almost all mt-QSAR models have considered the study of biological activity or toxicity separately. In the present study, we develop by the first time, a unified multitasking model based on quantitative-structure biological effect relationships (mtk-QSBER) for the simultaneous prediction of anti-TB activity and toxicity against Mus musculus and Rattus norvegicus. The mtk-QSBER model was created by using linear discriminant analysis (LDA) for the classification of compounds as positive (high biological activity and/or low toxicity) or negative (otherwise) under many experimental conditions. Our mtk-QSBER model, correctly classified more than 90% of the case in the whole database (more than 12,000 cases), serving as a powerful tool for the computer-assisted screening of potent and safe anti-TB drugs.[Abstract] [Full Text] [Related] [New Search]