These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H. Author: Zhang M, Wei L, Zhou Y, Du L, Imanaka T, Hua Q. Journal: J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):379-88. PubMed ID: 23381123. Abstract: D-xylose is one of the most abundant carbohydrates in nature. This work focuses on xylose metabolism of Gluconobacter oxydans as revealed by a few studies conducted to understand xylose utilization by this strain. Interestingly, the G. oxydans 621H Δmgdh strain (deficient in membrane-bound glucose dehydrogenase) was greatly inhibited when grown on xylose and no xylonate accumulation was observed in the medium. These experimental observations suggested that the mgdh gene was responsible for the conversion of xylose to xylonate in G. oxydans, which was also verified by whole-cell biotransformation. Since 621H Δmgdh could still grow on xylose in a very small way, two seemingly important genes in the oxo-reductive pathway for xylose metabolism, a xylitol dehydrogenase-encoding gox0865 (xdh) gene and a putative xylulose kinase-encoding gox2214 (xk) gene, were knocked out to investigate the effects of both genes on xylose metabolism. The results showed that the gox2214 gene was not involved in xylose metabolism, and there might be other genes encoding xylulose kinase. Though the gox0865 gene played a less important role in xylose metabolism compared to the mgdh gene, it was significant in xylitol utilization in G. oxydans, which meant that gox0865 was a necessary gene for the oxo-reductive pathway of xylose in vivo. To sum up, when xylose was used as the carbon source, the majority of xylose was directly oxidized to xylonate for further metabolism in G. oxydans, whereas only a minor part of xylose was metabolized by the oxo-reductive pathway.[Abstract] [Full Text] [Related] [New Search]