These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The intrinsic conformational features of amino acids from a protein coil library and their applications in force field development. Author: Jiang F, Han W, Wu YD. Journal: Phys Chem Chem Phys; 2013 Mar 14; 15(10):3413-28. PubMed ID: 23385383. Abstract: The local conformational (φ, ψ, χ) preferences of amino acid residues remain an active research area, which are important for the development of protein force fields. In this perspective article, we first summarize spectroscopic studies of alanine-based short peptides in aqueous solution. While most studies indicate a preference for the P(II) conformation in the unfolded state over α and β conformations, significant variations are also observed. A statistical analysis from various coil libraries of high-resolution protein structures is then summarized, which gives a more coherent view of the local conformational features. The φ, ψ, χ distributions of the 20 amino acids have been obtained from a protein coil library, considering both backbone and side-chain conformational preferences. The intrinsic side-chain χ(1) rotamer preference and χ(1)-dependent Ramachandran plot can be generally understood by combining the interaction of the side-chain Cγ/Oγ atom with two neighboring backbone peptide groups. Current all-atom force fields such as AMBER ff99sb-ILDN, ff03 and OPLS-AA/L do not reproduce these distributions well. A method has been developed by combining the φ, ψ plot of alanine with the influence of side-chain χ(1) rotamers to derive the local conformational features of various amino acids. It has been further applied to improve the OPLS-AA force field. The modified force field (OPLS-AA/C) reproduces experimental (3)J coupling constants for various short peptides quite well. It also better reproduces the temperature-dependence of the helix-coil transition for alanine-based peptides. The new force field can fold a series of peptides and proteins with various secondary structures to their experimental structures. MD simulations of several globular proteins using the improved force field give significantly less deviation (RMSD) to experimental structures. The results indicate that the local conformational features from coil libraries are valuable for the development of balanced protein force fields.[Abstract] [Full Text] [Related] [New Search]