These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Developing an efficient scheduling template of a chemotherapy treatment unit: A case study.
    Author: Ahmed Z, Elmekkawy T, Bates S.
    Journal: Australas Med J; 2011; 4(10):575-88. PubMed ID: 23386870.
    Abstract:
    UNLABELLED: This study was undertaken to improve the performance of a Chemotherapy Treatment Unit by increasing the throughput and reducing the average patient's waiting time. In order to achieve this objective, a scheduling template has been built. The scheduling template is a simple tool that can be used to schedule patients' arrival to the clinic. A simulation model of this system was built and several scenarios, that target match the arrival pattern of the patients and resources availability, were designed and evaluated. After performing detailed analysis, one scenario provide the best system's performance. A scheduling template has been developed based on this scenario. After implementing the new scheduling template, 22.5% more patients can be served. 1. INTRODUCTION: CancerCare Manitoba is a provincially mandated cancer care agency. It is dedicated to provide quality care to those who have been diagnosed and are living with cancer. MacCharles Chemotherapy unit is specially built to provide chemotherapy treatment to the cancer patients of Winnipeg. In order to maintain an excellent service, it tries to ensure that patients get their treatment in a timely manner. It is challenging to maintain that goal because of the lack of a proper roster, the workload distribution and inefficient resource allotment. In order to maintain the satisfaction of the patients and the healthcare providers, by serving the maximum number of patients in a timely manner, it is necessary to develop an efficient scheduling template that matches the required demand with the availability of resources. This goal can be reached using simulation modelling. Simulation has proven to be an excellent modelling tool. It can be defined as building computer models that represent real world or hypothetical systems, and hence experimenting with these models to study system behaviour under different scenarios.1, 2 A study was undertaken at the Children's Hospital of Eastern Ontario to identify the issues behind the long waiting time of a emergency room.3 A 20---day field observation revealed that the availability of the staff physician and interaction affects the patient wait time. Jyväskylä et al.4 used simulation to test different process scenarios, allocate resources and perform activity---based cost analysis in the Emergency Department (ED) at the Central Hospital. The simulation also supported the study of a new operational method, named "triage-team" method without interrupting the main system. The proposed triage team method categorises the entire patient according to the urgency to see the doctor and allows the patient to complete the necessary test before being seen by the doctor for the first time. The simulation study showed that it will decrease the throughput time of the patient and reduce the utilisation of the specialist and enable the ordering all the tests the patient needs right after arrival, thus quickening the referral to treatment. Santibáñez et al.5 developed a discrete event simulation model of British Columbia Cancer Agency"s ambulatory care unit which was used to study the impact of scenarios considering different operational factors (delay in starting clinic), appointment schedule (appointment order, appointment adjustment, add---ons to the schedule) and resource allocation. It was found that the best outcomes were obtained when not one but multiple changes were implemented simultaneously. Sepúlveda et al.6 studied the M. D. Anderson Cancer Centre Orlando, which is a cancer treatment facility and built a simulation model to analyse and improve flow process and increase capacity in the main facility. Different scenarios were considered like, transferring laboratory and pharmacy areas, adding an extra blood draw room and applying different scheduling techniques of patients. The study shows that by increasing the number of short---term (four hours or less) patients in the morning could increase chair utilisation. Discrete event simulation also helps improve a service where staff are ignorant about the behaviour of the system as a whole; which can also be described as a real professional system. Niranjon et al.7 used simulation successfully where they had to face such constraints and lack of accessible data. Carlos et al. 8 used Total quality management and simulation - animation to improve the quality of the emergency room. Simulation was used to cover the key point of the emergency room and animation was used to indicate the areas of opportunity required. This study revealed that a long waiting time, overload personnel and increasing withdrawal rate of patients are caused by the lack of capacity in the emergency room. Baesler et al.9 developed a methodology for a cancer treatment facility to find stochastically a global optimum point for the control variables. A simulation model generated the output using a goal programming framework for all the objectives involved in the analysis. Later a genetic algorithm was responsible for performing the search for an improved solution. The control variables that were considered in this research are number of treatment chairs, number of drawing blood nurses, laboratory personnel, and pharmacy personnel. Guo et al. 10 presented a simulation framework considering demand for appointment, patient flow logic, distribution of resources, scheduling rules followed by the scheduler. The objective of the study was to develop a scheduling rule which will ensure that 95% of all the appointment requests should be seen within one week after the request is made to increase the level of patient satisfaction and balance the schedule of each doctor to maintain a fine harmony between "busy clinic" and "quiet clinic". Huschka et al.11 studied a healthcare system which was about to change their facility layout. In this case a simulation model study helped them to design a new healthcare practice by evaluating the change in layout before implementation. Historical data like the arrival rate of the patients, number of patients visited each day, patient flow logic, was used to build the current system model. Later, different scenarios were designed which measured the changes in the current layout and performance. Wijewickrama et al.12 developed a simulation model to evaluate appointment schedule (AS) for second time consultations and patient appointment sequence (PSEQ) in a multi---facility system. Five different appointment rule (ARULE) were considered: i) Baily; ii) 3Baily; iii) Individual (Ind); iv) two patients at a time (2AtaTime); v) Variable Interval and (V---I) rule. PSEQ is based on type of patients: Appointment patients (APs) and new patients (NPs). The different PSEQ that were studied in this study were: i) first--- come first---serve; ii) appointment patient at the beginning of the clinic (APBEG); iii) new patient at the beginning of the clinic (NPBEG); iv) assigning appointed and new patients in an alternating manner (ALTER); v) assigning a new patient after every five---appointment patients. Also patient no show (0% and 5%) and patient punctuality (PUNCT) (on---time and 10 minutes early) were also considered. The study found that ALTER---Ind. and ALTER5---Ind. performed best on 0% NOSHOW, on---time PUNCT and 5% NOSHOW, on---time PUNCT situation to reduce WT and IT per patient. As NOSHOW created slack time for waiting patients, their WT tends to reduce while IT increases due to unexpected cancellation. Earliness increases congestion whichin turn increases waiting time. Ramis et al.13 conducted a study of a Medical Imaging Center (MIC) to build a simulation model which was used to improve the patient journey through an imaging centre by reducing the wait time and making better use of the resources. The simulation model also used a Graphic User Interface (GUI) to provide the parameters of the centre, such as arrival rates, distances, processing times, resources and schedule. The simulation was used to measure the waiting time of the patients in different case scenarios. The study found that assigning a common function to the resource personnel could improve the waiting time of the patients. The objective of this study is to develop an efficient scheduling template that maximises the number of served patients and minimises the average patient's waiting time at the given resources availability. To accomplish this objective, we will build a simulation model which mimics the working conditions of the clinic. Then we will suggest different scenarios of matching the arrival pattern of the patients with the availability of the resources. Full experiments will be performed to evaluate these scenarios. Hence, a simple and practical scheduling template will be built based on the indentified best scenario. The developed simulation model is described in section 2, which consists of a description of the treatment room, and a description of the types of patients and treatment durations. In section 3, different improvement scenarios are described and their analysis is presented in section 4. Section 5 illustrates a scheduling template based on one of the improvement scenarios. Finally, the conclusion and future direction of our work is exhibited in section 6. 2. SIMULATION MODEL: A simulation model represents the actual system and assists in visualising and evaluating the performance of the system under different scenarios without interrupting the actual system. Building a proper simulation model of a system consists of the following steps. Observing the system to understand the flow of the entities, key players, availability of resources and overall generic framework.Collecting the data on the number and type of entities, time consumed by the entities at each step of their journey, and availability of resources.After building the simulation model it is necessary to confirm that the model is valid. (ABSTRACT TRUNCATED)
    [Abstract] [Full Text] [Related] [New Search]