These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Infrared and Raman spectroscopic characterization of the phosphate mineral fairfieldite--Ca2(Mn2+,Fe2+)2(PO4)2·2(H2O).
    Author: Frost RL, Xi Y, Scholz R, Belotti FM, Lopez A.
    Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():216-23. PubMed ID: 23396008.
    Abstract:
    Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the phosphate mineral fairfieldite. The Raman phosphate (PO4)(3-) stretching region shows strong differences between the fairfieldite phosphate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists with multiple (PO4)2- antisymmetric stretching vibrations observed, indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 600 cm(-1) are assigned to ν4 phosphate bending modes. Multiple bands in the 400-450 cm(-1) region assigned to ν2 phosphate bending modes provide further evidence of symmetry reduction of the phosphate anion. Three broadbands for fairfieldite are found at 3040, 3139 and 3271 cm(-1) and are assigned to OH stretching bands. By using a Libowitzky empirical equation hydrogen bond distances of 2.658 and 2.730Å are estimated. Vibrational spectroscopy enables aspects of the molecular structure of the fairfieldite to be ascertained.
    [Abstract] [Full Text] [Related] [New Search]