These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selective heart rate reduction with ivabradine slows ischaemia-induced electrophysiological changes and reduces ischaemia-reperfusion-induced ventricular arrhythmias. Author: Ng FS, Shadi IT, Peters NS, Lyon AR. Journal: J Mol Cell Cardiol; 2013 Jun; 59():67-75. PubMed ID: 23402927. Abstract: Heart rates during ischaemia and reperfusion are possible determinants of reperfusion arrhythmias. We used ivabradine, a selective If current inhibitor, to assess the effects of heart rate reduction (HRR) during ischaemia-reperfusion on reperfusion ventricular arrhythmias and assessed potential anti-arrhythmic mechanisms by optical mapping. Five groups of rat hearts were subjected to regional ischaemia by left anterior descending artery occlusion for 8min followed by 10min of reperfusion: (1) Control n=10; (2) 1μM of ivabradine perfusion n=10; (3) 1μM of ivabradine+5Hz atrial pacing throughout ischaemia-reperfusion n=5; (4) 1μM of ivabradine+5Hz pacing only at reperfusion; (5) 100μM of ivabradine was used as a 1ml bolus upon reperfusion. For optical mapping, 10 hearts (ivabradine n=5; 5Hz pacing n=5) were subjected to global ischaemia whilst transmembrane voltage transients were recorded. Epicardial activation was mapped, and the rate of development of ischaemia-induced electrophysiological changes was assessed. HRR observed in the ivabradine group during both ischaemia (195±11bpm vs. control 272±14bpm, p<0.05) and at reperfusion (168±13bpm vs. 276±14bpm, p<0.05) was associated with reduced reperfusion ventricular fibrillation (VF) incidence (20% vs. 90%, p<0.05). Pacing throughout ischaemia-reperfusion abolished the protective effects of ivabradine (100% VF), whereas pacing at reperfusion only partially attenuated this effect (40% VF). Ivabradine, given as a bolus at reperfusion, did not significantly affect VF incidence (80% VF). Optical mapping experiments showed a delay to ischaemia-induced conduction slowing (time to 50% conduction slowing: 10.2±1.3min vs. 5.1±0.7min, p<0.05) and to loss of electrical excitability in ivabradine-perfused hearts (27.7±4.3min vs. 14.5±0.6min, p<0.05). Ivabradine administered throughout ischaemia and reperfusion reduced reperfusion VF incidence through HRR. Heart rate during ischaemia is a major determinant of reperfusion arrhythmias. Heart rate at reperfusion alone was not a determinant of reperfusion VF, as neither a bolus of ivabradine nor pacing immediately prior to reperfusion significantly altered reperfusion VF incidence. This anti-arrhythmic effect of heart rate reduction during ischaemia may reflect slower development of ischaemia-induced electrophysiological changes.[Abstract] [Full Text] [Related] [New Search]