These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells. Author: Vincent JJ, Huang Y, Chen PY, Feng S, Calvopiña JH, Nee K, Lee SA, Le T, Yoon AJ, Faull K, Fan G, Rao A, Jacobsen SE, Pellegrini M, Clark AT. Journal: Cell Stem Cell; 2013 Apr 04; 12(4):470-8. PubMed ID: 23415914. Abstract: Primordial germ cells (PGCs) undergo dramatic rearrangements to their methylome during embryogenesis, including initial genome-wide DNA demethylation that establishes the germline epigenetic ground state. The role of the 5-methylcytosine (5mC) dioxygenases Tet1 and Tet2 in the initial genome-wide DNA demethylation process has not been examined directly. Using PGCs differentiated from either control or Tet2(-/-); Tet1 knockdown embryonic stem cells (ESCs), we show that in vitro PGC (iPGC) formation and genome-wide DNA demethylation are unaffected by the absence of Tet1 and Tet2, and thus 5-hydroxymethylcytosine (5hmC). However, numerous promoters and gene bodies were hypermethylated in mutant iPGCs, which is consistent with a role for 5hmC as an intermediate in locus-specific demethylation. Altogether, our results support a revised model of PGC DNA demethylation in which the first phase of comprehensive 5mC loss does not involve 5hmC. Instead, Tet1 and Tet2 have a locus-specific role in shaping the PGC epigenome during subsequent development.[Abstract] [Full Text] [Related] [New Search]