These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The novel arsenical Darinaparsin circumvents BRG1-dependent, HO-1-mediated cytoprotection in leukemic cells.
    Author: Garnier N, Petruccelli LA, Molina MF, Kourelis M, Kwan S, Diaz Z, Schipper HM, Gupta A, del Rincon SV, Mann KK, Miller WH.
    Journal: Leukemia; 2013 Nov; 27(11):2220-8. PubMed ID: 23426167.
    Abstract:
    Darinaparsin (Dar) is a more potent cytotoxic arsenical than arsenic trioxide (ATO). We hypothesized that the increased cytotoxicity of Dar may be because of a decreased cytoprotective response. We observed that, unlike ATO, Dar does not induce heme oxygenase-1 (HO-1), even though it induces expression of other nuclear factor (erythroid-derived 2)-like 2 (NRF2)-dependent detoxifying enzymes to a greater extent than ATO, in both cancer cell lines and patient-derived leukemic cells. This strengthens the emerging evidence, showing that response to reactive oxygen species (ROS) is stimuli specific. Dar treatment prevents recruitment of the transcriptional coregulator Brahma-related gene 1 (BRG1) to the HMOX1 promoter, which is required for HMOX1 expression. The inability of Dar to induce HO-1 correlates with arrest in G2/M cell cycle phase and BRG1 phosphorylation. Inhibition of HO-1 increases the toxicity of ATO, but has no effect on Dar-induced apoptosis. Accordingly, the lack of HO-1 induction is involved in Dar's enhanced antileukemic properties. Our data highlight cytoprotective responses mediated by HO-1 and BRG1 as a novel target for enhancing the therapeutic range of arsenicals.
    [Abstract] [Full Text] [Related] [New Search]