These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Excess nicotinamide increases plasma serotonin and histamine levels.
    Author: Tian YJ, Li D, Ma Q, Gu XY, Guo M, Lun YZ, Sun WP, Wang XY, Cao Y, Zhou SS.
    Journal: Sheng Li Xue Bao; 2013 Feb 25; 65(1):33-8. PubMed ID: 23426511.
    Abstract:
    Methylation, a methyl group-consuming reaction, plays a key role in the degradation (i.e., inactivation) of monoamine neurotransmitters, including catecholamines, serotonin and histamine. Without labile methyl groups, the methylation-mediated degradation cannot take place. Although high niacin (nicotinic acid and nicotinamide) intake, which is very common nowadays, is known to deplete the body's methyl-group pool, its effect on monoamine-neurotransmitter degradation is not well understood. The aim of this article was to investigate the effect of excess nicotinamide on the levels of plasma serotonin and histamine in healthy subjects. Urine and venous blood samples were collected from nine healthy male volunteers before and after oral loading with 100 mg nicotinamide. Plasma N(1)-methylnicotinamide, urinary N(1)-methyl-2-pyridone-5-carboxamide (2-Py), and plasma betaine levels were measured by using high-performance liquid chromatography (HPLC). Plasma concentrations of choline, serotonin and histamine were measured using commercial kits. The results showed that the plasma N(1)-methylnicotinamide level and the urinary excretion of 2-Py significantly increased after oral loading with 100 mg nicotinamide, which was accompanied with a decrease in the methyl-group donor betaine. Compared with those before nicotinamide load, five-hour postload plasma serotonin and histamine levels significantly increased. These results suggest that excess nicotinamide can disturb monoamine-neurotransmitter metabolism. These findings may be of significance in understanding the etiology of monoamine-related mental diseases, such as schizophrenia and autism (a neurodevelopmental disorder).
    [Abstract] [Full Text] [Related] [New Search]