These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lecithin/chitosan controlled release nanopreparations of tamoxifen citrate: loading, enzyme-trigger release and cell uptake.
    Author: Barbieri S, Sonvico F, Como C, Colombo G, Zani F, Buttini F, Bettini R, Rossi A, Colombo P.
    Journal: J Control Release; 2013 May 10; 167(3):276-83. PubMed ID: 23428841.
    Abstract:
    Tamoxifen citrate (TAM), an anticancer drug with amphiphilic properties, was loaded in lecithin/chitosan nanoparticles (LCN) with a view to oral administration. The influence of tamoxifen loading on the physico-chemical properties of nanoparticles was studied. Size, surface charge and morphological properties of tamoxifen-loaded nanoparticles (LCN-TAM) were assessed. The increase in the tamoxifen amount in the LCN-TAM preparation up to 60 mg/100 ml maintained the positive zeta potential value of about +45 mV. A statistically significant decrease in particle size was observed for TAM amounts between 5 and 20mg. A strong influence of loaded tamoxifen on the structure of lecithin/chitosan nanoparticles was observed, supported by the quantification of free chitosan and morphological analysis. A loading of tamoxifen in nanoparticles of around 19% was obtained. The release of the drug from the LCN-TAM colloidal dispersion was measured, showing that tamoxifen citrate was released very slowly in simulated gastro-intestinal fluids without enzymes. When enzymes able to dismantle the nanoparticle structure were added to the dissolution medium, drug release was triggered and continued in a prolonged manner. Tamoxifen-loaded nanoparticles showed cytotoxicity towards MCF-7 cells comparable to that obtained with tamoxifen citrate solution, but the rate of this toxic effect was dependent on drug release. Caco-2 cells, used as a model of the intestinal epithelium, were shown to take up the TAM loaded nanoparticles extensively.
    [Abstract] [Full Text] [Related] [New Search]