These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of multi-core-shell magnetic molecularly imprinted microspheres for rapid recognition of dicofol in tea. Author: Yan H, Cheng X, Sun N. Journal: J Agric Food Chem; 2013 Mar 20; 61(11):2896-901. PubMed ID: 23432386. Abstract: Magnetic multi-core-shell molecularly imprinted microspheres (Fe3O4@MIMs) based on multi-Fe3O4 nanoparticles as core structures and dummy imprinted materials as shell structures have been synthesized by a surface-imprinted technique using dichlorodiphenyltrichloroethane as the dummy template and were successfully used as a specific adsorbent for rapid isolation of trace levels of dicofol from teas. The resulting Fe3O4@MIMs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and thermogravimetric analysis. In comparison to the imprinted polymers prepared by the traditional polymerizations, the obtained Fe3O4@MIMs showed regularly spherical shape, porous morphologies, high saturation magnetization [56.8 electromagnetic units (emu)/g], and rapid response time (15 s). The as-synthesized Fe3O4@MIMs, which incorporated the excellent molecular recognition and magnetic separation properties, were successfully used as special adsorbents for rapid isolation and extraction of trace levels of dicofol and its analogues from a complicated tea matrix.[Abstract] [Full Text] [Related] [New Search]