These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vibrational spectra, crystal structure, DFT quantum chemical calculations and conformation of the hydrazo-bond in 6-methyl-3-nitro-2-(2-phenylhydrazinyl)pyridine. Author: Kucharska E, Michalski J, Sąsiadek W, Talik Z, Bryndal I, Hanuza J. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr 15; 107():317-25. PubMed ID: 23434560. Abstract: The crystal and molecular structures of 6-methyl-3-nitro-2-(2-phenylhydrazinyl)pyridine (6-methyl-3-nitro-2-phenylhydrazopyridine) have been determined by X-ray diffraction and quantum chemical DFT analysis. The crystal is monoclinic, space group C2/c, with Z=8 formula units in the elementary unit cell of dimensions a=16.791(4), b=6.635(2), c=21.704(7)Å, β=100.54(3)°. The molecule consists of two nearly planar pyridine subunits. A conformation of the linking hydrazo-bridge CNHNHC is bend and the dihedral angle between the planes of the phenyl and pyridine rings is 88.2(5)°. The hydrogen bonding of the type NH···N and possibly also CH···O favors a dimer formation in the crystal structure. The dimers are further linked by a NH···O hydrogen bond, so forming a layer parallel to the ab plane. The molecular structure of the studied compound has been determined using the DFT B3LYP/6-311G(2d,2p) approach and compared to that derived from X-ray studies. The IR and Raman wavenumbers have been calculated for the optimized geometry of a possible monomer structural model but the possibility of the dimer formation through the NH···N hydrogen bond has also been considered. The structural and vibrational properties of the intra-molecular NH···O interaction are described.[Abstract] [Full Text] [Related] [New Search]